非结构网格上Level Set方程的间断有限元解法

Discontinuous Galerkin Method for Level Set Equation on Unstructured Grids

  • 摘要: 针对间断有限元弱形式难于求解可压缩流场中Level Set方程的问题提出间断有限元强形式,从而在统-框架下解决Level Set方程在可压缩与不可压缩流场中的求解问题.通过非结构网格上采用Legendre-Gauss-Lobatto节点构造基函数,在复杂区域上可以达到任意高阶的精度.将若干-、二、三维算例与已有文献或解析解比较,验证方法追踪自由界面的有效性.结果表明,该方法适合各种情形下Level Set方程求解,易于在复杂区域的非结构网格上实施,精度高、分辨率高且具有高质量守恒性,既能避免重新初始化过程又方便向高维扩展.

     

    Abstract: A new approach。a strong form of discontinuous Galerkin method(DGM),was developed to solve level set equation on unstructured drids.A weak form is only suitable for incompressible flow,while the strong form can used to solve level set equation in any case,including incompressible and compressible flows.Thc approach allows arbitrarib higlI order accuracy through Legendre-Gauss.Lobatto nodal distribution.Several numerical tests on one-,two-and three-dimensional unstructured grids demonstrate versatility and validity of the method.Besides,implementation ofthe strong form ofDGM brings benefits,such as high order,mars conservation, dimension independence,resolving interface location at the sub-cell level,handling complex domains,avoiding reinitialization and so on.

     

/

返回文章
返回