圆筒内氢等离子体非定常化学反应羽流场DSMC分析

DSMC Analysis of Unsteady Chemical Reactions of Hydrogen Plasma in Cylinder

  • 摘要: 利用直接模拟Monte Carlo方法研究圆筒侧壁注入氢等离子体羽流场在8×10-6s内的非定常流动特性.根据Bird的化学反应模型考虑离解-复合反应模型和电荷转移反应模型.在流场中注入H2、H、金属原子X、H2+和H+五种组分,研究离解-复合反应对流场中粒子分布和密度的影响,结果表明离解-复合反应使H2数密度降低,H数密度增加,说明在流场中H2的离解反应速率大于H的复合反应速率.加入电荷转移反应后H2+数密度降低,H+数密度增加,对其他组分数密度没有显著影响.

     

    Abstract: Unsteady flow characteristics of particles in plumes are studied with direct simulation Monte-Carlo method (DSMC) in an 8×10-6 s period. Dissociation model, recombination model and charge exchange model are included based on Bird's chemical reaction models. Molecular hydrogen H2, atomic hydrogen H, atomic metal X, ion H2+ and ion H+ are included. Influence on density distribution of particles in the field due to dissociation and recombination is studied. It shows that the number density of molecular hydrogen H2 decreases and the number density of atomic H increases since dissociation rate of molecular hydrogen H2 is faster than recombination of atomic H in the flow field. A charge exchange model is added in dissociation and recombination models. It shows that the number density of ion H2+ decreases and the number density of ion H+ increases obviously in charge exchange model.

     

/

返回文章
返回