有旋转效应的Kadomtsev-Petviashvili方程初、边值问题的数值解

NUMERICAL SOLUSIONS OF THE INITIAL-BOUNDARYVALUE PROBLEMS OF THE ROTATION MODIFIEDKADOMTSEV-PETVIASHVILI EQUATION

  • 摘要: Grimshaw1在旋转渠道中不可压、分层、无粘流体运动的研究中导出有旋转效应的Kadomtsev-Petviashvili方程。本文系统地讨论了该方程初、边值问题的数值解法并给出不同旋转效应下的数值解。结果表明,该方程有Kelvin波类型的孤立波解。孤立波的振幅沿渠道横向衰减,波前向后转折,并伴随有向后传播的小振幅Poincaré尾波。这些结果得到Grimshaw和Tang2理论上的阐明,孤立波的特性与Maxworthy3和Renouard4等的实验相吻合。

     

    Abstract: Grimshaw derived the rotation modified Kadomtsev-Petviashivili Equation (RKP Eq.) to discribe long surface or internal waves in the presence of rotation. The initial-boundary value problems of RKP equation are studied numerically in this paper. It is shown that solitary-like waves prapogating to the right can be found, whose amplitudes decay in the direction perpendicular to the direction of prapogation and the wave fronts are curvedback. The solitary waves remain unsteady and are always accompanied by Poincare waves travelling to the left.These effects are more noticeable as the effects of rotation are increased.

     

/

返回文章
返回