环形运动势搅拌下偶极BEC中的非线性动力学

Nonlinear Dynamics in A Dipole Bose-Einstein Condensate Induced by A Circular Moving Potential

  • 摘要: 数值研究谐振子势囚禁的偶极玻色-爱因斯坦凝聚体(BEC)在环形运动高斯势搅拌时的非线性动力学行为。随着高斯势运动速度以及尺寸的变化, BEC尾流中出现涡旋偶极子激发、涡团激发以及斜孤子激发三种激发模式。通过数值计算, 得到不同偶极相互作用下各种激发模式对应的参数区间, 分析偶极相互作用以及高斯势条件对激发模式的影响,并讨论不同激发的物理机制。

     

    Abstract: Nonlinear dynamic behavior of a dipole Bose-Einstein condensate (BEC) trapped by harmonic potentials is numerically studied. We introduce a circular moving repulsive Gaussian potential to stir the condensate and study its emission phenomenon. The study is based on dimensionless two-dimensional GP equation. It reveals that there are three emission modes, namely vortex dipole emission, cluster emission and oblique soliton emission, in the wake. With a systematic numerical calculation, parameter regimes of dipole interactions corresponding to various excitation modes are obtained. Influences of dipole interactions and Gaussian potential conditions on excitation modes are analyzed, and physical mechanism of different emission modes is discussed.

     

/

返回文章
返回