积分梯度法的两种格式

Two Schemes of Integrated Gradient Method

  • 摘要: 在二维柱坐标系下Lagrange流体力学的计算中,积分梯度法是动量方程的一种有效离散方法.积分梯度法中,IGT(Integral Gradient Total)格式不能保持柱几何下一维球对称性;IGA(Integral Gradient Average)格式可以保持一维球对称性,但当相邻网格质量相差比较大时,会得到远远脱离真实物理现象的加速度.深入研究IGA和IGT格式发现,当相邻网格边界压力取为质量加权时,即使相邻网格质量相差较大,对于一维平面和一维柱问题,IGT与IGA等价;在二维情形下,可以缩小IGT和IGA之间的差异.理论证明,IGA格式不能保持系统的动量守恒,IGT格式能保持系统的动量守恒性.数值模拟结果进一步显示了这两个格式的优缺点.

     

    Abstract: In a cylinderical coordinate system, integrated gradient method is an effective discrctization for equations of Lagrangian hydrodynamics. In the method IGT (Integral Gradient Total) scheme does not preserve spherical symmetry while IGA (Integral Gradient Average) scheme overcomes nonsymmetry in cylinderical coordinate system. However, IGA results in abnormally large acceleration in case of large mass ratios, where the mass of one subcell around a node is smaller than that of the other three subcells. If boundary force between neighbouring cells is taken as weighted mass average, IGA scheme is equivalent to IGT scheme in both a planar problem and a cylinderical problem even if there exists a large mass ratio. It is shown that IGT scheme preserves total momentum conservation but IGA scheme does not. Numerical results demonstrate advantages and disadvantages of the two schemes.

     

/

返回文章
返回