求解二维三温辐射扩散方程组的一种代数两层迭代方法

Algebraic Two-level Iterative Method for 2-D 3-T Radiation Diffusion Equations

  • 摘要: 在二维三温辐射扩散方程离散代数方程组的求解中,由于光子、电子和离子温度之间存在耦合关系,而且三个温度在同种介质中有不同的扩散性质,使得经典的代数多重网格(AMG)方法难以直接应用.基于特殊粗化策略,在粗网格层解除了这种耦合关系,得到一种代数两层网格方法,而粗网格方程由经典AMG方法求解.将这一算法具体应用于JFNK(Jacobian自由的Newton-Krylov)框架中预处理方程的求解,并基于该框架求解二维三温辐射扩散方程组.数值结果显示了算法的可扩展性和健壮性.

     

    Abstract: A two-level iterative method is proposed for linear systems discretizated from two-dimensional(2-D) radiative diffusion equations with photon, electron,ion temperatures(3-T).The main idea is to decouple one temperature from other two by a special coarsening strategy.Variables related to electron temperature are forced to be selected as coarse points and photon and ion temperatures are forced to be fine points.Several single temperature equations instead of coupled linear systems need to be solved by a classical-AMG method.The method is applied to the JFNK framework for preconditioning.Numerical results show effectiveness of the method.

     

/

返回文章
返回