PPV中极化子动力学方程的龙格-库塔求解

Runge-Kutta Method for Dynamical Equations of Polaron in PPV

  • 摘要: 构造求解-阶微分方程组初值问题的八阶龙格-库塔递推公式,结合描述有机分子运动的-维紧束缚模型,研究PPV原子链中极化子的形成及运动.对碳原子数N=160的PPV原子链,由可控步长八阶龙格-库塔公式求解2N(2N+1)=102720个方程组成的方程组,用Fortran语言编程计算,得到稳定的极化子结构和运动图像;在场强E=1×105V·cm-1的电场作用下,极化子沿分子链的运动速率约为0.2635Å·fs-1.计算结果表明,八阶龙格-库塔方程可以有效地用于有机分子链中载流子运动的模拟.

     

    Abstract: An eighth-order Runge-Kutta(R-K)recurrence formula is constructed for differential equations.The formula i8 used tu simulate formation and movement of polarons in a one-dimensional poly-phenylenevinylene(PPV)molecular chain.The PPV chain composed of N carbons is described by an extended tight binding model.For N=160.the equations are solved by eighth.order R.K method.Stable polaron configuration and moving picture are obtained.Under electric field E=1×105V×cm-1.a poiaron moved along PPV chain at a velocity of 0.263 5Å·fs-1.It indicates that the eighth-order R-K formula is applicable to carrier movement in organic molecules.

     

/

返回文章
返回