求解可压缩流的高精度非结构网格WENO有限体积法

A High-order Unstructured-grid WENO FVM for Compressible Flow Computation

  • 摘要: 提出-种基于最小二乘重构和WENO限制器的非结构网格高精度有限体积方法.用中心网格的某些邻居网格建立重构多项式,给出-定的原则搜索和存储足够多的邻居网格以建立重构多项式,采用最小二乘法求解重构多项式的系数.用-种通用的方法控制重构邻居个数,以减少存储和计算,采用WENO限制器和旋转Riemann求解器以达到统-的高精度并且抑制守恒律方程求解中的非物理振荡.为检验上述算法,以基于节点的梯度重构,Bath and Jesperson限制器的二阶算法为基准,给出三阶和四阶格式与二阶格式以及高阶格式若干经典算例计算结果的对比和分析.

     

    Abstract: A general high-order unstructured-grid finite volume method based on least-square reconstruction and WENO limiter is presented.Some of the neighboring cells are employed to construct high-order polynomials.a least-square method is used tO solve overdetermined problem.The number of neighboring cells can be reduced with a general method,which saves memory and computing time. To achieve uniform accuracy and depress non-physical oscillation of conservation laws,a WENO limiter and rotated Riemann solver are employed.Two classical cases are provided to show resolution differences between high-order schemes and the second order scheme based on gradient reconstruction and Bath and Jesperson limiter.

     

/

返回文章
返回