局部时间步长间断有限元方法求解三维欧拉方程

A Discontinuous Galerkin Method with Local Time Stepping for Euler Equations

  • 摘要: 使用间断有限元方法求解三维流体力学方程.空间剖分采用非结构四面体网格,为了克服显格式在单元网格尺寸差别较大时计算效率低下的问题,在格式中采用局部时间步长技术(LTS),即控制方程在空间、时间上积分得到一种单步格式,既可以局部计算每个单元又避免了Runge-Kutta高精度格式处理三维问题时存储量过大的问题.为了提高流体力学方程计算精度,在计算单元边界的数值流通量时使用任意高阶精度方法(ADER).数值算例表明格式稳定有效.

     

    Abstract: We use discontinuous finite element method to solve three-dimensional hydrodynamic equations.The domain is divided with an unstructured tetrahedral mesh.In order to overcome low efficiency of explicit scheme,especially as sizes of cells vary strongly,we use a local time stepping technique(LTS).We integrate control equations in space and time to obtain a single-step scheme.The calculation of each grid cell can be localized.It avoids excessive memory difficulties as dealing with three-dimensional problem with high order Runge-Kutta method.ADER method is used to calculate numerical flux across element boundary to improve accuracy of the hydrodynamic equations.Finally,numerical examples demonstrate stability and effectiveness of the method.

     

/

返回文章
返回