间断有限元方法求解-维非平衡辐射扩散方程

Discontinuous Finite Element Method for 1D Non-equilibrium Radiation Diffusion Equations

  • 摘要: 研究一维非平衡辐射扩散方程的数值方法.通过求解间断系数热传导方程的广义黎曼问题,得到种一带加权数值流量,基于该数值流量构造了一类新型的间断有限元方法.在时间离散上采用向后Euler方法,形成的非线性方程组采用Picard迭代求解.数值试验表明该方法具有捕捉大梯度的能力,而且能适应扩散系数间断的情形.

     

    Abstract: We discuss numerical simulation of one-dimensional non-equilibrium radiation diffusion equations.A weighted numerical flux between adjacent grid cells is obtained by solving heat conduction equation with discontinuous coefficient.With this numerical flux of diffusive generalized Riemann problem(dGRP),a discontinuous finite element method is proposed for radiation diffusion equations. A backward Euler time diseretization is applied for semi-discrete form and a Picard iteration is used to solve nonlinear system of equations.Numerical results demonstrate that the method has a capability of capturing strong gradients and can be accommodated to discontinuous diffusion coefficient.

     

/

返回文章
返回