Grover量子搜索算法的一般化多相位匹配

General Multiphase Matching for Grover Quantum Search Algorithm

  • 摘要: 一个量子系统将不可避免地受到不可预知的微扰影响,据此断定文献中的Grover量子搜索算法的实验实现是在三维复子空间中完成的.同时证明在二维复子空间中,对任意给定的初始态|γ0>=cosβ0|α>+sinβ0e|β>(β0是较小的正实数,ζ是任意的一个实数),存在解集Fj=(θj,θj-1,…,θ1),(φj,φj-1,…,φ1)(整数j≥ 2)使得目标态能以100%的最大成功概率找到,其中相位旋转角θlφl是不为2k'π的实数(1 ≤ lj,k'为任意整数).如果只要求目标态以较高的成功概率找到,那么当一个无序数据库中目标态和非目标态的总个数足够大时,对于相对较小的正整数j,解集Fj可表示为的形式.

     

    Abstract: Since a quantum system is inevitably influenced by some unpredictable perturbations, we thereby conclude that all the experimental realizations of Grover quantum search algorithm reported were, in fact, achieved in a three-dimensional complex subspace. We also prove that in a two-dimensional complex subspace, for any given initial superposition of basis states|γ0>=cosβ0|α>+sinβ0e|β)(β0 is a small positive real number, ζ is an arbitrary real number), there exists a set of solutions Fj=(θj,θj-1,…,θ1),(φj,φj-1,…,φ1) such that a desired state can be found with certainty for some positive integer j≥2, where the phase rotation angles θl andθt are real numbers but not equal to 2k'π,1 ≤ 1 ≤ j,k'is an arbitrary integer. If it is only required that a desired state can be found with high success probability, then as the total number of the desired and undesired states in an unsorted database is sufficiently large the above set of solutions Fj can be written in the form  for a relatively small positive integer j.

     

/

返回文章
返回