Abstract:
In inertial confinement fusion (ICF) target, collision between fusion neutrons may produce super-high energy neutrons. A relationship between velocity of fusion and ratio of generated super-high energy neutron is derived. An ideal fusion model is simulated by numerical method. It indicates that the ratio of generated super-high energy neutron is increased sharply as burning volume of DT is decreased. With this information, 2D-effect and mixing-effect during compression of target are deduced with escaped super-high energy neutrons. Furthermore, a relationship between velocity of burning T and ratio of generated super-high energy neutron is concluded. It shows that using super-high energy neutron to detect ICF is effective.