球坐标动量空间下相对论Vlasov方程的数值算法

Numerical Method for Relativistic Vlasov Equation in Cartesian-Spherical Coordinate System

  • 摘要: 针对相对论Vlasov方程动量区间跨度大、难以计算的困难,将相对论Vlasov方程在球坐标动量空间中进行数值求解.对相对论Vlasov方程球坐标动量空间构造4阶非分裂守恒型数值格式.数值模拟相对论Landau阻尼问题并与解析理论进行比较,验证数值模型和算法的有效性.对激光等离子体相互作用进行初步模拟分析,表明通过采用球坐标下的动量空间,可在相对较少动量网格情形下,获得与粒子模拟可相互验证的结果.

     

    Abstract: We study numerical method for relativistic Vlasov equation and present a scheme for computing Vlasov equation based on Cartesian-spherical coordinate system, which can be used to reduce number of numerical grid for momentum space. Furthermore, a 4th order non-splitting finite volume scheme is proposed in order to solve momentum parts of relativistic Vlasov equation. In test problems, especially relativistic Landau problem, laser-plasma interaction are solved by using the scheme. We confirm the scheme with theoretically analysis as well as numerical comparison with results of PIC method.

     

/

返回文章
返回