惯性约束聚变中内爆混合的模型构建

Modeling of Shell-mixing into Central Hotspot in Inertial Confinement Fusion Implosion

  • 摘要: 从热斑质量方程和能量守恒方程入手,重新计算考虑混合后聚变燃料的比内能和比热容等热力学参数,分析混合效应在轫致辐射损失等能量输运方面的作用,构建有杂质混合情况的热斑燃烧动力学模型.根据静态模型中的热斑燃烧的功率平衡条件,研究烧蚀层杂质混合比例与点火阈值和热斑自持燃烧的关系.理论分析和数值计算表明,混合效应导致热斑中的轫致辐射增强是点火失败的重要因素之一.通过调整不同掺杂材料、混合浓度及混合方式,得到壳层混合与热斑面密度、热斑离子温度的演化之间的关系.最后,基于模拟结果给出两种降低混合影响的方法.

     

    Abstract: From mass conservation and energy conservation of hotspot, dynamics of hotspot combustion involving shell-mix are constructed by recalculating special internal energy and heat capacity, in which bremsstrahlung radiation loss and other energy transfer are considered. With power balance in hotspot, relations between fractions of shell-mixing in hotspot and ignition threshold and self-sustainable combustion are investigated. Theoretical analysis and numerical simulation show that enhancement of radiation loss induced by shell-mixing plays dominated role in failure of ignition. By adjusting materials and mixing fraction, effects to combustion paths are studied. Finally, two methods for degrading impact of shell-mixing are proposed.

     

/

返回文章
返回