一个高精度数值积分公式

A HIGHER ORDER ACCURACY NUMERICAL QUADRATURE RULE

  • 摘要: 本文讨论了一个具有高精度的求积公式abf(x)dx)=(b-a)(7f(a)+16f((a+b)/(2))+7f(b)+(b-a)(f'(a)-f'(b)))/30+Ef其中Ef=((b-a)7/(604800))f(6)(ξ),a<ξ<b及其复合公式ab(f(x)dx)=(b-a)((7f(a+2ih)+7f(a+2ih)+16???19880410-2???f(a+2i-1h)+(b-a)(f'(a)-f(b))/2n)/30n+Enf这里Enf=((b-a)7)/(604800n6)f(6)(η),a< η< bh=(b-a)/2n它具有辛普生公式的一切优点,但精确度比辛普公式高2阶。数值试验表明,这是一个非常有效的求积公式。

     

    Abstract: This paper discusses the following quadrature rule with higher degree of accuracy abf(x)dx)=(b-a)(7f(a)+16f((a+b)/(2))+7f(b)+(b-a)(f'(a)-f'(b)))/30+Ef Where Ef=((b-a)7/(604800))f(6)(ξ),a<ξ<b andits Compositrule are presented aswell:ab(f(x)dx)=(b-a)((7f(a+2ih)+7???19880410-2???f(a+2ih)+16f(a+2i-1h)+(b-a)(f'(a)-f(b))/2n)/30n+Enf Where Enf=((b-a)7)/(604800n6)f(6)(η),a< η< b h=(b-a)/2n which possess the all advantages of simpsons rule, but the degree of accuracy isincreased by two order than Simpson's rule.The numerical tests that the quadrature formula of this paper is very efficient.

     

/

返回文章
返回