‖A-1‖∞的上界和等对角优势
UPPER BOUND OF ‖A-1‖∞ AND EQUIDIAGONAL DOMINANCE
-
摘要: 本文在A为H阵的情况下给出了一个较前人给出的更为简单和具体的‖A-1‖x的上界,本文还定义了"等对角优势矩阵",并证明了若A为具有等对角优势δ的等对角优势矩阵(亦即|a11-||a11|=δ,∀i),则ρ(A-1)=‖A-1‖x=(A-1)ij=1/δ,∀i,利用等对角优势M阵,可以求任何H阵A的‖A-1‖x的上界,最后我们还给出了几个有趣的例子以说明本文的一些定理。Abstract: A simpler and more concrete estimate of the upper bound of ‖A-1‖∞ than those in previous papers is given, when A is an H-matrix and the equidiagonal dominant matrix is defined.We prove that if A is an equidiagonal-dominant M-matrix with equidiagonal-dominanceδ|i.e.|a11-||a11|=δ,∀i),则ρ(A-1)=‖A-1‖x=(A-1)ij=1/δ,∀i, By use of equidiagonal-dominant matrix the upper bound of ‖A-1‖x for any H-matrx may be found. Several interesting examples are given to illustrate our theorems.