A-1的上界和等对角优势

UPPER BOUND OF ‖A-1 AND EQUIDIAGONAL DOMINANCE

  • 摘要: 本文在A为H阵的情况下给出了一个较前人给出的更为简单和具体的‖A-1x的上界,本文还定义了"等对角优势矩阵",并证明了若A为具有等对角优势δ的等对角优势矩阵(亦即|a11-||a11|=δ,∀i),则ρ(A-1)=‖A-1x=(A-1)ij=1/δ,∀i,利用等对角优势M阵,可以求任何HA的‖A-1x的上界,最后我们还给出了几个有趣的例子以说明本文的一些定理。

     

    Abstract: A simpler and more concrete estimate of the upper bound of ‖A-1 than those in previous papers is given, when A is an H-matrix and the equidiagonal dominant matrix is defined.We prove that if A is an equidiagonal-dominant M-matrix with equidiagonal-dominanceδ|i.e.|a11-||a11|=δ,∀i),则ρ(A-1)=‖A-1x=(A-1)ij=1/δ,∀i, By use of equidiagonal-dominant matrix the upper bound of ‖A-1x for any H-matrx may be found. Several interesting examples are given to illustrate our theorems.

     

/

返回文章
返回