一维随机分形曲线的分维估计

EVALUATING THE FRACTAL DIMENSION OF RANDAM FRACTAL CURVES

  • 摘要: 本文提出了一维分形的分维估计方法-局部方差累积法。通过对已知分维数的Weiers trass函数和分数布朗运动的检验,估计的分维数与理论值有很好的吻合。最后,利用蒙特卡罗方法模拟了高期分布随机粗糙面,并对它们的分维给予了估计。

     

    Abstract: In this paper we present a new method-local accumulated deviation method for evaluating the fractal dimension of curves or one-dimensional(1D) surfaces. Our method is tested on various types of curves for Weierstrass-Mandelbrot fractal function and fractal Brownian motion with known fractal dimension. The results are good agreement with the theoritical values. Finally, using Monte-Carlo method, we simulated the randam rough(1D) surfaces with Gauss spectrum, and the new method is applied to data from simulating surfaces.

     

/

返回文章
返回