时间分数阶亚扩散方程的高阶差分方法

High-order Finite Difference Methods for Time-fractional Subdiffusion Equation

  • 摘要: 提出两差分格式求解时间分数阶亚扩散方程.两个格式都是绝对稳定的,收敛阶均为O(τq+h2),其中q(q=2-β或2)与方程解的光滑性有关,β(0 < β < 1)是分数阶导数的阶、τh分别是时间和空间方向步长.数值实验验证了理论结果的正确性,并与其他方法进行比较,显示了本文方法的有效性和精确性.

     

    Abstract: Two finite difference methods for time-fractional subdiffusion equation with Dirichlet boundary conditions are developed.The methods are unconditionally stable and convergent of order(τq+h2) in the sense of discrete L2 norm,where q(q=2-β or 2) is related to smoothness of analytical solution to subdiffusion equation,β(0 < β < 1) is order of the fractional derivative,τ and h are step sizes in time and space directions,respectively.Numerical examples are provided to verify theoretical analysis.Comparisons with other methods are made,which show better performances over many existing ones.

     

/

返回文章
返回