Jacobi矩阵的逆特征值问题

INVERSE EIGENVALUE PROBLEMS FOR JACOBIAN MATRICES

  • 摘要: 本文研究以下两类逆特征值问题:问题1:给定实数λ,μ(λ > μ)和n维非零正交实向量x,y。求n阶Jacobi矩阵J,使得Jx=λx,Jy=μy,λ > μ > λ3(J) > …λn(J)(或λ1(J) > … > λn-2(J) > λ > μ)。问题2:给定n维非零实向量xn个实数λ1 > … > λn。求n阶Jacobi矩阵J,使得λi(J)=λi,i=1,…,n,Jx=λ1x(或Jx=λnx)。文中导出了问题有解的一些充分必要条件。对问题Ⅰ,给出了解的表示式:对问题Ⅱ,提供了一种数值解法。

     

    Abstract: This paper considers the following two inverse eigenvalue problems:Problem Ⅰ. Given λ,μR, λ > μ, and x, yRn:x≠0,y≠0, xTy=0. Find n×n Jacobian matrix J such that Jx=λx, Jy=μy; λ > μ > λ3(J) > … > λn(J)(or λ1(J) > … > λn-2(J) > λ > μ).problem Ⅱ. Given xRn, x≠0, and n distinct real numbers λ1,λ2,…,λn which satisfy λ1 > λ2 > … > λn. Find n×n Jacobian matrix J such thatλi(J)=λi, i=1,…,n; Jx=λ1x (or Jx=λnx)Some necessary and sufficient conditions for existance of solution of these problems are given. For the problem Ⅰ, the expression of the solution is given. For the problem Ⅱ, a numerical algorithm is provided.

     

/

返回文章
返回