三维圆柱几何格林函数节块法中子扩散计算

A NEW NODAL GREEN'S FUNCTION METHOD FOR CYLINDRICAL GEOMETRY

  • 摘要: 发展了中子扩散计算三维圆柱几何格林函数节块法。首先通过横向积分将中子扩散方程化为三个互相耦合的一维偏通量方程。对于径向偏通量方程,将径向扩散微分算符分解为平板几何的扩散微分算符和一个修正项之和,将修正项移到方程右端作为修正源项,这样,三个方程都化为平板几何的一维方程形式。再借助平板几何第二类边界条件格林函数,对圆柱几何相应体源作积分,建立偏通量积分方程。对于修正源项,通过分部积分方法将偏通量导数项转化为对格林函数的求导。通过源迭代法求解方程。基准计算表明,该计算精度高、速度快,可成为三维圆柱几何堆芯设计和燃料管理计算的有效方法。

     

    Abstract: A nodal Green's function method for cylindrical geometry for multidimensional neutron diffusion calculation is developed.First,the neutron diffusion equation is converted to three coupled one-dimensional partial flux equation through transverse integration.For the radial partial flux equation,the differential term is decomposed to a diffusion term plus a modified term,which is called modified source.Therefore,the three equations show the same form as for slab geometry.Second,by way of the second kind boundary condition Green's function for slab geometry,the three equations are integrated to obtain the integral equations.For the modified source term,it can be converted to Green's function's differentiation term through partial integration.At last,the equations are solved by source iteration method.Through benchmark computation,this method shows high speed and high extent of accuracy.It is a effective method for reactor design of three dimensional cylindrical geometry and for nuclear fuel management calculation.

     

/

返回文章
返回