NS方程的各向异性笛卡尔网格法研究

ANISOTROPIC CARTESIAN GRID METHOD FOR THE NAVIER-STOKES EQUATIONS

  • 摘要: 将近年发展起来的用于Euler方程求解的具有局部均匀网格总体非结构特性的笛卡尔网格法推广到NS方程的求解。为了与流场的各向异性相适应、减少网格点数量,提出了一种各向异性网格加密法。另外还研究了分级笛卡尔网格对内点格式稳定性的影响和插值固体边界条件的稳定性。数值结果表明各向异性笛卡尔网格法相对于传统的各向同性网格方法能大量节省网格点数量而且与后者具有同样的精度。

     

    Abstract: The Cartesian grid method initially developed for computing inviscid flows is extended to viscous flow problems. In order to reduce the number of mesh points and to be compatible with the anisotropic nature of viscous flows, an anisotropic Cartesian grid method is proposed. The stability of a space-centered interior difference scheme and that of a finite-difference solid wall condition are studied for the Cartesian grid. It is found that the anisotropic Cartesian grid method can substantially reduce the number of grid points without jeopadizing the accuracy.

     

/

返回文章
返回