粒子群及遗传算法在相对论返波管中的应用

Particle Swarm Optimization and Genetic Algorithm for a Relativistic Backward Wave Oscillator

  • 摘要: 在全三维粒子模拟软件CHIPIC平台上,分别开发了粒子群及基因算法模块.以相对论返波管为例,采用三种不同类型的参数(连续参数、离散参数、混合参数),对粒子群及基因算法进行比较.优化结果表明:粒子群算法的收敛速度更快,在有限的迭代步数内得到的目标结果也更优良,总体表现优于基因算法.

     

    Abstract: Based on platform of three-dimensional particle-in-cell (PIC), CHIPIC, modules of particle swarm optimization (PSO) and genetic algorithm (GA) are designed to optimize a relativistic backward wave oscillator (RBWO), respectively. Comparisons of PSO and GA are implemented in three kinds of parameters of RBWO:Continuous parameter, discrete parameter, and mix parameters. It shows that performances of PSO are better than that of GA. PSO has higher optimization accuracy and convergence rate than GA.

     

/

返回文章
返回