解Hamilton-Jacobi方程的不连续有限元方法

DISCONTINUOUS FINITE ELEMENT METHODS FOR HAMILTON-JACOBI EQUATIONS

  • 摘要: 将两类具有不同基函数的有限元应用于Hamilton Jacobi方程,得到了求解Hamilton Jacobi方程的不连续有限元数值格式,并证明了这两类格式数值解在一定条件下收敛于Hamilton Jacobi方程的弱解.数值实例比较了两类格式的精度和分辨间断的能力.

     

    Abstract: Two numerical schemes of discontinuous finite element methods are presented for Hamilton Jacobi equations which are obtained by using the different basic functions. The numerical solutions of these schemes converge to weak solutions of the Hamilton Jacobi equation under some conditions. Numerical tests given illustrate the accuracy and resolution of discontinuity for the two different schemes.

     

/

返回文章
返回