可压涡卷空间演化的迎风紧致差分数值模拟

NUMERICAL SIMULATIONS OF SPATIALLY-DEVELOPING COMPRESSIBLE VORTEX ROLLUP USING A UPWIND COMPACT DIFFERENCE METHOD

  • 摘要: 从数值算法的耗散和色散特征的时空全离散Fourier分析出发,通过直接求解二维非定常可压Navier Stokes方程,将发展的5阶迎风紧致差分格式用于无约束可压平面受迫剪切层中基频涡卷空间演化过程的数值模拟.采用被动守恒标量等方法显示了基频涡卷的饱和、一次对并、二次对并等现象,据此探讨了入口来流亚谐扰动引起的初值效应问题,表明可压大尺度涡结构空间演化形态与受迫扰动方式之间存在关联.

     

    Abstract: The temporal spatial discrete Fourier transformation is employed to analyze the dissipation and dispersion errors of the numerical algorithm used here. Based on directly solving the two dimensional time dependent compressible Navier Stokes equations, the spatial evolution of primary vortex generated in forced compressible plane free shear layers is simulated numerically by using a new fifth order upwind compact difference scheme. The phenomena, including the primary vortex saturating, the first pairing, and the second pairing, are shown with the passively conserved scalar method and so on. The initial value effect related to subharmonic disturbances in incoming flows is studied. The results show that the spatial evolution type of large scale compressible vortices is associated with the disturbance modes.

     

/

返回文章
返回