二维三温能量方程组的高效代数解法

Efficient Algebraic Methods for Two-dimensional Energy Equations with Three Temperatures

  • 摘要: 针对二维三温能量方程九点格式离散后形成的非线性方程组,研制了高效求解的代数解法器.主要思想是在部分Newton-Krylov(PNK)方法和Jacobi矩阵自由的Newton-Krylov(JFNK)方法的框架下,结合非精确Newton类方法和预条件Krylov子空间方法进行高效求解.数值结果显示,PNK方法比非线性块Gauss-Seidel方法快6倍以上,在PNK框架下比较了3种预条件子和4种Krylov子空间方法,得出不同组合的最佳方案.还比较了JFNK方法和PNK方法.

     

    Abstract: We developed a high performance algebraic solver for nonlinear systems discretized from two-dimensional energy equations with three temperatures by a nine point scheme.The main idea is to solve the system by an inexact Newton method and preconditioned Krylov subspace methods in the frame of PNK and JFNK methods.Numerical experiments show the efficiency of the algebraic solvers.It is shown that our PNK method is 6 times faster than the nonlinear block Gauss-Seidel method. The JFNK and PNK methods are also compared.

     

/

返回文章
返回