中性粒子在Ioffe阱中的经典运动方程的Floquet解
Floquet Solution of Classical Motion Equation of a Neutral Particle in an Ioffe Trap
-
摘要: 研究中性粒子在Ioffe阱中近原点区域的囚禁时,阱中的磁场可以呈现出一种简明的形式.磁矩μ反平行于磁场的中性粒子在阱中与磁场发生相互作用,借助相互作用势,可以获得粒子在阱中的经典运动方程.在一定的条件下,采用迭代近似的目的,将方程演化为马丢方程的形式,利用传统的WKBJ目的可实现方程的近似求解.研究阱中中性粒子的囚禁问题时,感兴趣的是马丢方程的Floquet解,即周期为π,2π的全周期和半周期解,欲获得这种周期解,马丢方程中的参数λ和q必须满足一定的关系,为此必须选择阱的特定参数和粒子的特定初始条件,对这一问题进行了探索性的研究.Abstract: The motion of a neutral particle with magnetic moment,μ antiparallel to the field of an Ioffe trap is studied are obtained. With interaction between the magnetic moment of the particle and the magnetic field, classical motion equations of neutral particles in an Ioffe trap are abtained. With limited conditions we derive concise form of the motion equations using a perturbative method. They are Mathieu equations. With proper parameters the Mathieu equations are solved with traditional WKBJ method. As an attempt, we study periodic solutions, i.e., Floquet solutions of the Mathieu equation. It is necessary that parameters (λ and q) in the Mathieu equation satisfy special relations. With appropriate Ioffe trap parameters and initial condition of the particle, we present several periodic solutions.