多分量流计算的高分辨KFVS有限体积方法(英文)

HIGH RESOLUTION KFVS FINITE VOLUME METHODS FOR MULTICOMPONENT FLOW CALCULATIONS

  • 摘要: 论及高分辨分子动力学通向量分裂(KFVS)有限体积方法的推广。在方法中提出了适当修改Maxwell平衡分布用以修复Euler方程。基于熟知的Euler方程与Boltzmann方程的关系,提出了一类求解多分量Euler方程的高分辨分子动力学通向量分裂(KFVS)有限体积方法。应用该方法不需要求解任何Riemann问题或求解附加的非守恒压力方程也不需要任何非守恒修正。数值计算表明,数值解在物质界面附近无振荡,激波速度也正确,显示出方法的高精度及其稳健性。

     

    Abstract: It concerns the extension of high resolution kinetic flux-vector splitting (KFVS) finite volume methods.In this new method,a suitable modification of Maxwellian is proposed to recover the Euler equations with an additional conservative equation.Based on the well-known connection between Euler equations and Boltzmann equations,a class of high resolution KFVS finite volume methods are presented to solve Euler equations governing multicomponent flows. This method does not solve any Riemann problems and additional nonconservative equation satisfied by pressure,and needs not to add any nonconservative corrections.The numerical solutions are oscillation-free near material fronts,and produce correct shock speeds.

     

/

返回文章
返回