扩展型SEIR-LSTM模型的COVID-19动态预测: 以2022年东京为例
COVID-19 Dynamic Prediction of Extended SEIR-LSTM Model: A Case Study of Tokyo in 2022
-
摘要: 基于2022年日本东京新型冠状病毒感染(COVID-19)疫情数据, 提出一种融合动态修正的扩展型SEIR(易感-潜伏-感染-移除)模型与LSTM(长短时记忆网络)深度学习网络的混合预测框架, 以提升疫情趋势的预测精度。以2022年9月1日至10月12日东京疫情数据为基础, 在经典SEIR模型框架下, 先引入动态时变疫苗接种率参数和人口密度空间修正因子, 构建扩展型SEIR模型; 再引入LSTM网络, 对扩展型SEIR预测值与真实数据的残差进行动态修正, 通过长短期记忆机制学习历史数据中的非线性模式, 实现预测误差实时补偿。优化后的混合模型在东京疫情演进预测中与实际数据高度吻合, 其峰值预测能力显著优于单一扩展型SEIR模型。Abstract: This study proposes a hybrid prediction framework integrating a dynamically modified extended SEIR (Susceptible-Exposed-Infectious-Removed) model with an LSTM (Long Short-Term Memory) deep learning network to enhance the prediction accuracy of epidemic trends, based on COVID-19 pandemic data from Tokyo, Japan in 2022. Firstly, utilizing Tokyo's pandemic data from September 1 to October 12, 2022, the research first introduces dynamic time-varying vaccination rate parameters and spatial population density correction factors within the classical SEIR model framework to construct an extended SEIR model. Secondly, an LSTM network is incorporated to dynamically adjust the residuals between the predictions of the extended SEIR model and the actual data, leveraging its long-term and short-term memory mechanisms to learn nonlinear patterns from historical data and achieve real-time compensation for prediction errors. The results demonstrate that the optimized hybrid model exhibits a high degree of consistency with actual data in predicting the progression of the Tokyo pandemic, with its peak prediction performance significantly outperforming that of the standalone extended SEIR model.
下载: