耦合Gross-Pitaevskii方程的一类时间高精度守恒型数值格式

A Class of Temporal High-order Conservative Numerical Schemes for Coupled Gross-Pitaevskii Equation

  • 摘要: 本文在传统拉格朗日乘子方法的基础上,提出一种改进的拉格朗日乘子法,借助优化思想,对耦合Gross-Pitaevskii方程设计一类时间方向高精度的守恒型数值格式。整个格式由两部分组成:1)利用高精度半隐格式离散原始模型作预测;2)利用相同方案近似优化模型作校正。搭配适当的空间高精度保结构离散,全离散数值格式具有时空高精度特性,并自然地满足离散情形下原模型的质量和能量守恒。相关数值实验验证了新方法的有效性。

     

    Abstract: In this paper, based on the traditional Lagrange multiplier method, an improved Lagrange multiplier method is proposed to design a class of temporal high-order conservative schemes for the coupled Gross-Pitaevskii equation with the help of optimization strategy. The whole method consists of two parts: 1) the application of a high-order semi-implicit scheme to discretize the original model as a prediction; 2) the utilization of a similar scheme to approximate the optimization model as a correction. Together with appropriate high-order structure-preserving space discretization, the fully discrete scheme has high-order accuracy in time and space, and naturally satisfies the conservation laws of mass and energy of the original model in the discrete sense. Numerical experiments verify the effectiveness of the new method.

     

/

返回文章
返回