非线性Klein-Gordon方程的长时间守恒傅里叶拟谱方法

A Conservative Fourier Pseudo-spectral Method for Long-time Dynamics of Nonlinear Klein-Gordon Equation

  • 摘要: 本文运用Crank-Nicolson型的拟谱方法对具有弱非线性项的三次非线性Klein-Gordon方程的长时间动力学行为进行数值研究,并建立算法的最优误差估计。由误差估计可知,网格选取的最佳策略为h \leqslant O\left(\varepsilon^\beta / r\right),\tau \leqslant O\left(\varepsilon^\beta / 2\right)。此外,通过时间方向的尺度变换可将带弱非线性项的Klein-Gordon方程转化为具有高频振荡的形式,即解在空间方向变化较为平缓,但在时间方向存在波长为O(εβ)的高频振荡。大量的数值结果分别对算法的误差上界和能量守恒性质进行了验证。

     

    Abstract: This paper numerically studies the long-time dynamic behavior of the cubic nonlinear Klein-Gordon equation with weak nonlinear terms by using Crank-Nicolson pseudo-spectral method, and establishes the optimal error estimate of the scheme. According to the error estimate, the optimal strategy for grid selection ish \leqslant O\left(\varepsilon^\beta / r\right), \tau \leqslant O\left(\varepsilon^\beta / 2\right). In addition, the Klein-Gordon equation with weak nonlinear term can be transformed into a form with high frequency oscillation by scaling in the time direction, that is, the solution changes gently in the spatial direction, but there is a high frequency oscillation with wavelength O(εβ) in the temporal direction. The error upper bound and energy conservation properties of the scheme are verified by a large number of numerical results.

     

/

返回文章
返回