扩散方程在任意多边形网格上的高精度GDDG格式

A High Order General Direct Discontinuous Galerkin Method for Diffusion Equations on Arbitrary Polygons

  • 摘要: 本文提出一种基于泰勒基函数的广义直接间断有限元(GDDG)方法,用于求解任意多边形网格上的扩散方程。该方法适用于包含扭曲四边形或任意多边形的复杂网格结构。数值实验表明:GDDG方法在任意多边形网格上能够有效求解扩散方程,其中A类算法可以达到最优(k+1)阶L2收敛和kH1收敛,B类算法可以达到最优H1收敛,特定参数选取下可以达到最优L2收敛。结合理论分析与数值实验,提出了GDDG方法中参数最佳选取准则。随后,通过测试变扩散系数问题和各向异性扩散问题,验证了GDDG方法对一般扩散问题的适用性。

     

    Abstract: In this paper, we propose a general direct discontinuous Galerkin (GDDG) method based on Taylor basis functions for diffusion equations on arbitrary polygonal meshes. The mesh can be composed of distorted quadrilaterals or arbitrary polygons. Numerical experiments show that the GDDG method can effectively solve diffusion equations on arbitrary polygonal meshes. Specifically, the algorithms in group A achieve optimal (k+1)th order convergence in the L2 norm and optimal k th order convergence in the H1 norm, while the algorithms in group B achieve optimal H1 convergence, and achieve optimal L2 convergence with specific parameter selection. Through theoretical analysis and numerical experiments, the optimal selection of parameters for the GDDG method is proposed. Subsequently, the method is tested on diffusion problems with variable diffusion coefficients and anisotropic diffusion, demonstrating the applicability of the GDDG method to general diffusion problems.

     

/

返回文章
返回