耗散非线性薛定谔方程的Crank-Nicolson有限差分格式的无条件最优H1误差估计

Unconditional and Optimal H1 Error Estimate of Crank-Nicolson Finite Difference Scheme for Non-conservative Nonlinear Schrödinger Equation

  • 摘要: 本文在Delfour-Fortin-Payre提出的全离散格式的基础上, 讨论得到了关于时间变系数耗散非线性薛定谔方程的Crank-Nicolson有限差分格式在时间和空间上均是二阶精度的结论。给出了该格式满足离散形式的质量和能量平衡定律, 并给出了相应的证明过程。其次, 在不受网格比约束的情况下, 建立并证明了H1范数下的最优误差估计。在分析该格式时, 除了采用标准能量方法, 还运用光滑截断技巧和抬升技巧解决计算证明过程中的困难。本文分析方法还可用于求解非线性薛定谔类型方程的其他有限差分格式及理论分析。

     

    Abstract: Based on the fully discrete scheme proposed by Delfour-Fortin-Payre, This paper is concerned with the Crank-Nicolson finite difference scheme for the non-conservative nonlinear Schrödinger equation (NCNLS). The scheme is second oder accurate in time and space, and we prove that their extensions satisfy discrete versions of the mass and energy balance laws for the NCNLS. An optimal error estimate of the finite difference method in H1 norm is established without any constraints of the grid ratios. Besides the standard energy method, a 'cut-off' function technique and a 'lifting' technique are introduced in analyzing the proposed scheme. The analytical method presented in this paper can be applied to many other finite difference schemes for solving nonlinear Schrödinger type equations.

     

/

返回文章
返回