求解含静态裂缝线弹性问题的一类基于物理信息神经网络算法
A Physics-informed Neural Networks Algorithm for Linear Elastic Static Crack Problems
-
摘要: 针对二维含静态裂缝线弹性问题构造了一类新的基于物理信息神经网络算法。为了处理裂缝处位移场的强间断性, 基于区域分解思想, 将计算区域分成若干个子区域, 并采用多个相互独立的神经网络分别求解各个子区域中的位移场和应力场。为了处理裂尖处应力场的强奇异性, 引入裂尖渐近场函数对神经网络的输出量进行修正, 以期显著提高计算精度。最后, 相关数值实验验证了算法的有效性。Abstract: This paper proposes a novel Physics-Informed Neural Networks algorithm for linear elastic static crack problems. In order to handle the discontinuity of the displacement fileds along the crack, we adopt independent multi-neural networks to solve all the components of the displacement and stress fileds by using the domain decompositions technique. Moreover, in order to capture the singularity of the stress fields at the crack tip, we use the crack tip asymptotic field functions to modify the outputs of the multi-neural networks, which can improve the accuracy remarkably. Numerical experiments verify the efficiency of our algorithm.
下载: