Abstract:
Structure, electronic and magnetic properties of (ZnSe)
12 clusters doped with one or two Mn atoms were studied with a first-principles method. Substitutional, exohedral, and endohedral doping are considered. Substitutional isomers are found most favorable for both monodoped and bidoped clusters. Magnetic moment is mainly contributed by 3d component of Mn atom, while 4s and 4p orbitals also have certain contributions. Due to hybridization interaction, a small magnetic moment is induced in nearest neighboring Se and Zn atoms. We demonstrate that endohedral bidoped (ZnTe)
12 clusters favor ferromagnetic state, which has potential applications in nanoscale quantum devices.