水-氧混合气氛下UO2表面分子吸附与解离机制研究

Molecular Adsorption and Dissociation Mechanisms on UO2Surfaces in Water-Oxygen Mixed Atmospher

  • 摘要: 铀是核能与国防领域的重要核材料,其化学活性活泼,极易被氧气(O2)、水蒸气(H2O)等环境气体氧化,形成二氧化铀(UO2)氧化层,引发材料力学性能劣化及氢化腐蚀风险。深入揭示O2和H2O在UO2表面的吸附与反应机制,是掌握铀氧化腐蚀规律及建立腐蚀动力学模型的基础。然而,水-氧混合气氛下UO2表面复杂反应序列的物理机制仍不清晰。本研究提出并验证了适用于UO2表面大规模计算的1k反铁磁(AFM)模型,针对O2和H2O在UO2表面吸附与解离机制开展研究。理论上证实了O2和H2O在UO2(111)表面均存在化学吸附态的实验观点,进一步系统揭示了O2和H2O在UO2(111)和(110)表面的吸附和解离机制。通过原子级热力学方法考虑环境条件,计算给出了O2和H2O在UO2表面的吸附热力学相图,并阐明:O2的单层与H2O多层吸附规律分别源于吸附分子间的静电排斥与氢键作用,导致H2O会在UO2表面优先吸附和解离。在水-氧混合气氛下,H2O优先解离会引入多余电荷,从而促进后续O2的吸附。随后,吸附态O2促进OH基团的完全解离,并与H反应生成OH和O,最终形成水氧循环反应机制:OH+O2@UO2 -> OH@UO2+x。本研究统一解释了关于水-氧混合气氛下反应序列的两类实验,为理解铀氧化腐蚀规律提供了关键机理认知。

     

    Abstract: Uranium is a critical nuclear material in both energy and defense sectors. Its high chemical reactivity facilitates rapid oxidation by environmental gases such as oxygen (O2) and water vapor (H2O), forming a uranium dioxide (UO2) oxide layer, further causes mechanical properties and hydriding corrosion. Unraveling the adsorption and reaction mechanisms of O2 and H2O on UO2 surfaces is fundamental to understand uranium oxidation kinetics and establish corrosion models. However, the physical mechanisms governing complex reaction sequences under mixed water-oxygen conditions remain unclear. This study developed and validated 1k antiferromagnetic (AFM) model for large-scale UO2 surface calculations, investigating O2 and H2O adsorption and dissociation mechanisms. We theoretically confirmed experimental observations of chemisorption states for both O2 and H2O on UO2(111), and systematically revealed adsorption and dissociation pathways on UO2(111) and (110) surfaces. Employing ab-initio atomistic thermodynamics method, the adsorption thermodynamic phase diagrams under environmental conditions are constructed, demonstrating that O2 monolayer adsorption originates from intermolecular electrostatic repulsion while H2O multilayer adsorption arises from hydrogen bonding, leading to preferential H2O adsorption and dissociation. H2O dissociation introduces excess charges, promote subsequent O2 adsorption in mixed environments. The adsorbed O2 then facilitates OH dissociation, further reacting with H to form OH and O, ultimately establishing a water-oxygen cycle reaction mechanism: OH+O2@UO2 -> OH@UO2+x. This work explains the reaction sequences observed in water-oxygen environments and provides key mechanistic insights into uranium oxidation corrosion.

     

/

返回文章
返回