基于协方差定位的ES-MDA自动历史拟合研究

Automatic History Matching Using Covariance Localization in ES-MDA

  • 摘要: 油藏数值模拟是石油工程领域重要的分析工具,其中历史拟合过程对提高模型预测精度和指导开发决策至关重要。但传统的历史拟合方法普遍存在效率低、依赖大量人工干预以及计算成本高等问题。虽然通过ES-MDA算法加速自动历史拟合能够减少迭代次数并加快模型收敛速度,但实际应用中仍易出现滤波发散与虚假数据相关等问题。为解决这些问题,本研究提出一种基于协方差定位改进的ES-MDA算法,并将其应用于自动历史拟合;改进算法结合了协方差局域化技术优势,可有效减少远距离和无关区域的虚假相关对更新过程的负面影响。本文进一步以PUNQ油藏模型为算例,对比了传统ES-MDA算法与基于协方差定位的改进ES-MDA算法在历史数据拟合与模型参数反演两方面的性能。结果表明:对于生产数据拟合,较传统ES-MDA算法,改进ES-MDA算法的拟合误差降低约21.23 %,收敛速度提高约25%,且稳定性更高;在模型参数反演方面,基于改进ES-MDA算法更新的数值模型与参考模型的吻合程度更高,模型参数误差较传统ES-MDA算法降低约4.78%;同时,改进ES-MDA算法在迭代后的散度累计降低了91.72%,表明改进算法具有更佳的数据同化能力和抗过拟合性能。本研究提出了基于协方差定位的ES-MDA自动历史拟合方法,提高了油藏数值模拟拟合精度与稳定性,为高效可靠的油藏模型自动校正提供了参考。
     

     

    Abstract: Reservoir numerical simulation is a core tool in petroleum engineering, with history matching essential to predictive accuracy and development decisions. Conventional history‑matching methods are often inefficient, labor‑intensive, and computationally expensive. Although the ensemble smoother with multiple data assimilation (ES‑MDA) can accelerate automatic history matching, practical use still suffers from filter divergence and spurious correlations. We propose a covariance‑localized ES‑MDA that limits long‑range, dynamically irrelevant correlations during updates and apply it to the PUNQ benchmark. Compared with conventional ES‑MDA, the localized variant, for production‑parameter inversion, reduces fitting error by 21.23%, increases convergence speed by 25%, and improves stability; for model‑parameter inversion, it yields estimates closer to the reference model, lowering parameter error by 4.78%. It also reduces cumulative post‑iteration divergence by 91.72%, indicating stronger data‑assimilation capability and better resistance to overfitting. Overall, the covariance‑localized ES‑MDA enhances the accuracy and stability of reservoir history matching and offers a practical route to efficient, reliable automatic calibration of reservoir models.

     

/

返回文章
返回