机器学习赋能新材料设计:从经验试错到数据驱动的范式变革

Machine Learning Enabled Materials Design: From Empirical Trial-and-Error to Data-Driven Paradigm Shift

  • 摘要:   传统材料研发依赖经验试错,周期长成本高。本文综述了机器学习(Machine Learning, ML)推动材料研究从“经验驱动”向“数据驱动”的范式变革。首先概述了机器学习三大类算法的原理和用途;再以固体氧化物燃料电池材料为主要案例,阐述ML在五大场景的应用:(1)数据发现——ML加速甚至替代传统理论计算和模拟,再结合大语言模型的文本挖掘,获取海量材料数据和知识;(2)性能预测——通过特征工程与ML模型建立“成分-结构-性能”的映射;(3)合成指导——结合贝叶斯优化与自主实验室实现闭环工艺优化;(4)表征解析——材料微结构的图像识别与重建;(5)逆向设计——按性能需求生成相应的材料。最后,探讨当前挑战并展望智能驱动研发范式的发展。

     

    Abstract:   
      Traditional materials research heavily relies on empirical trial-and-error approaches with long cycles and high costs. This review delineates the paradigm shift from "experience-driven" to "data-driven" propelled by machine learning (ML).​We commence with an overview of the principles and applications of three major categories of ML. Subsequently, using solid oxide fuel cell materials as cases, we elaborate on the implementation of ML across five scenarios: (1) data discovery—ML accelerates or even replaces traditional theoretical calculations and captures material data through text mining via large language models; (2) performance prediction—mapping "composition-structure-property" through feature engineering and ML models; (3) synthesis guidance—enabling closed-loop process optimization with self-driving laboratories; (4) characterization parsing—image recognition and reconstruction of material microstructures; (5) inverse design—generating candidate materials according to performance requirements. Finally, we address current challenges and outline future prospects for the development of ML on materials’ research.

     

/

返回文章
返回