人工智能在扩展SEIR-LSTM传染模型的应用

Application of Artificial Intelligence in Expanding SEIR-LSTM Infectious Model

  • 摘要: 本研究基于 2022 年日本东京新型冠状病毒肺炎(COVID-19)疫情数据,提出了一种融合动态修正的扩展型 SEIR(易 感 -潜伏 -感染 -移除 )模型与 LSTM(长短时记忆网络)深度学习网络的混合预测框架,以提升疫情趋势的预测精度。以 2022 年 9 月 1 日至 10 月 12 日东京疫情数据为基础,研究引入 LSTM 网络对扩展型 SEIR 预测值与真实数据间的残差进行动态修正,通过长短期记忆机制学习历史数据中的非线性模式,实现预测误差的实时补偿。研究结果表明,优化后的混合模型在东京疫情演进预测中与实际数据高度吻合,其峰值预测能力显著优于单一扩展型 SEIR 模型。

     

    Abstract: Based on the epidemic data of novel coronavirus pneumonia (COVID-19) in Tokyo, Japan, in 2022, this study proposes a hybrid forecasting framework that integrates the dynamically modified extended SEIR (susceptible-exposed-infectious-recovered) model and the LSTM (long-term and short-term memory network) deep learning network to improve the prediction accuracy of epidemic trend. Based on the Tokyo epidemic data from September 1 to October 12, 2022, this study introduces an LSTM network to dynamically correct the residuals between the extended SEIR prediction values and the real data. Through the long short-term memory mechanism, nonlinear patterns in historical data are learned to achieve real-time compensation for prediction errors. The research results indicate that the optimized hybrid model is highly consistent with actual data in predicting the evolution of the Tokyo epidemic, and its peak prediction ability is significantly better than the single extended SEIR model.

     

/

返回文章
返回