计算物理  2016, Vol. 33 Issue (4): 453-459
文章快速检索     高级检索
飞秒激光参数对四态阶跃型分子光电子能谱的影响[PDF全文]
李月华, 郭玮     
南华大学电气工程学院, 湖南 衡阳 421001
摘要: 利用含时波包法研究三激光场中四态阶跃型K2分子光电子能谱的Autler-Townes(AT)分裂.研究第二束激光场强和波长对AT分裂的影响.共振时,光电子谱为对称三分裂,非共振时,不对称三分裂逐渐变为双分裂.波长增加,谱峰以不等位移向低能方向移动.边峰间距不随波长的改变而改变,随场强增强而增大.研究结果为进一步从第一性原理的理论研究提供有用的信息,为实现分子的光控制及量子调控提供重要参考.
关键词: 含时波包法     四态阶跃型K2分子     光电子能谱     Autler-Townes分裂    
Photoelectron Spectra of Four-Level Ladder Molecules: Effect of Femtosecond Laser Parameters
LI Yuehua, GUO Wei     
School of Electrical Engineering, University of South China, Hengyang 421001, China
Summary: Autler-Townes (AT) splitting in photoelectron spectra of four-level ladder K2 molecule driven by three laser pulses is investigated with time-dependent wave packet approach. Dependence of AT splitting on second laser pulse is studied. Photoelectron spectra show triple splitting with symmetric profiles in resonance, while triple splitting with asymmetric profiles is transformed into double splitting gradually in nonresnance. Three peaks shift to lower energy differently as laser wavelength increases. Splitting between two sideband peaks does not vary with laser wavelength, but increases with increasing laser intensity. These results are of importance for molecular spectroscopy. It stimulates theoretical studies from first principles and provides basis for realizing optical control of molecules.
Key words: time-dependent wave packet approach     four-level ladder K2 molecule     photoelectron spectra     Autler-Townes splitting    
0 引言

Autler-Townes (AT)分裂是强激光与物质相互作用的非线性现象[1].研究发现激光场强[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],波长[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],脉宽[6, 7, 21, 22, 24],脉冲形状[25]和延时[2, 3, 12]影响AT分裂. 理论和实验上有对不同构型的多态原子/分子体系的研究.

通过泵浦-探测技术可观测到三态体系的AT双分裂. Wollenhaupt等人[2, 3]实验上观察到阶跃型K原子光电子谱的AT双分裂,研究了泵浦场强和延时对AT分裂的影响.他们认为不对称分裂由非共振激发引起,分裂间距随场强的增强而增大. Peng和Zheng[4]认为泵浦场强和失谐影响V型体系AT双峰分裂间距,位置和峰高. Zhang等人[5]认为介质粒子数密度影响飞秒激光脉冲在Λ型三能级原子介质的传播和光谱特性. Sun和Lou[6]理论研究了泵浦场强和脉宽对阶跃型Na2的AT双分裂的影响.长脉宽可能导致不对称双峰. Yuan等人[7]研究了分子转动和取向对阶跃型Na2的AT双分裂的影响. Yao等人[8, 9]研究了阶跃型K2的AT双分裂,认为泵浦场强和波长决定分裂间距和峰高.

四态体系的AT分裂与三态体系有一些相似的特点. Wei等人[10]和Han等人[11]认为V-型原子吸收谱的双/三分裂依赖于第二个驱动场的场强和波长. Liu和Fan[12]认为两驱动场之间相对位相影响准Λ型四能级系统中的传播效应. 一些研究认为驱动场失谐影响Λ-型原子体系电磁诱导透明(EIT)共振中双/三分裂谱峰位置和峰高[13, 14, 15, 16]. Echaniz等人[17],Dutta等人[18] 和Wang 等人[19]认为驱动场场强和失谐影响N-型原子双/三分裂间距及谱峰峰高. Sandhya[20]研究认为中间跃迁耦合较强时,三驱动场中阶跃型原子体系的吸收谱为三峰(动力学分裂).

对于四态阶跃型体系,Meier等人[21, 22]和Hu等人[23, 24]观察到三驱动场中Na2/Li2的AT三分裂,研究了脉宽对AT分裂的影响. 长脉宽可能导致不对称AT三分裂. Yao和Zheng[25]在近共振区观察到K2的不对称AT三分裂,研究了同时改变三驱动场的参数时,激光场强,波长和形状对AT分裂的影响. 他们没有研究共振和远共振区的情况. 他们也没有研究单一激光场参数对AT分裂的影响.

以上关于AT分裂对激光场强和波长依赖性研究的对象多是四态 N,V,和Λ 构型[9, 10, 11, 12, 13, 14, 15, 16, 17]. 很少关于阶跃型构型的研究[19, 20, 21, 22, 23]. 第二束泵浦激光场强和波长对四态阶跃型K2 分子AT分裂影响的研究未见报道. 本文利用含时波包法,研究了泵浦1-泵浦2-探测激光场中四态阶跃型K2分子光电子谱的AT分裂. 分别讨论了泵浦2激光场共振,近共振区和远共振区三种情况下AT分裂的特点.

1 基本理论

采用K2分子的四态模型: 基态|X〉(|X〉1Σg+),激发态|A〉(|A〉1Σu+)和|2〉 (|2〉1Πg+),和电离态|X+〉(|X+2Σg+)[25, 26, 27],如图 1所示. 计算中忽略分子的旋转自由度.

图1 K2分子势能曲线(箭头分别表示激发能1.462 eV (848 nm), 1.579 eV (785 nm), 和1.579 eV (785 nm).) Fig. 1 Potential energy curves of K2 molecule(The arrows indicate excitation energies of 1.462 eV (848 nm), 1.579 eV (785 nm), and 1.579 eV (785 nm), respectively.)

采用波恩-奥本海默近似,分子波函数Ψ满足含时薛定谔方程

${\text{i}}\hbar \frac{\partial }{{\partial t}}\psi = H\psi ,$ (1)

系统的哈密顿量H可以写为

$H = {H_S} + H' = T + V + H',$ (2)

其中,T是核的动能算符,V是系统的势能算符,H′是K2分子与激光场的相互作用项.对此四态模型,波函数可以写成为

$\psi = {\left( {{\psi _{\text{X}}},{\psi _{\text{A}}},{\psi _2},{\psi _{{\text{ion}}}}} \right)^{\text{T}}},$ (3)
其中,ψXψAψ2ψion分别是基态|X〉,激发态|A〉和|2〉,和电离态|X+〉的波函数. 电离态是一个连续态,根据出射光电子的能量,ψion可以转化成一系列的准连续态,其表示形式为
${\psi _{{\text{ion}}}} = {\left( {{\psi ^{\left( 1 \right)}},{\psi ^{\left( 2 \right)}},\cdots ,{\psi ^{\left( N \right)}}} \right)^{\text{T}}},$ (4)

其中,N表示K2分子电离态的数目.

动能算符T可以表示为

$T = - \frac{{{\hbar ^2}}}{{2\mu }}\frac{{{\partial ^2}}}{{\partial {R^2}}}\left( \begin{gathered} 1\;0\;0\;o \hfill \\ 0\;1\;0\;o \hfill \\ 0\;0\;1\;o \hfill \\ \tilde o\;\tilde o\;\tilde o\;I \hfill \\ \end{gathered} \right),$ (5)

其中,μ是K2分子的折合质量,R是核间距.o=(0,0,…,0)是一个N维的零向量,$\tilde o$是o的转置向量,I是一个N×N维的单位矩阵.

势能算符V可以表示为

$V = \left( \begin{gathered} {V_{\text{X}}}\;0\;\;0\;o \hfill \\ 0\;\;{V_{\text{A}}}\;0\;o \hfill \\ 0\;\;0\;\;{V_2}\;o \hfill \\ \tilde o\;\;\tilde o\;\;\tilde o\;V \hfill \\ \end{gathered} \right),$ (6)

其中,VXVAV2分别表示基态|X〉,激发态|A〉和|2〉的势能面. V是一个N×N维矩阵,用来描述K2分子离散化的电离态,其表示形式

$V = {V_{\text{X}}} + I + \left( \begin{gathered} {\xi ^{\left( 1 \right)}}\;\;0\;\;\; \cdots \;0 \hfill \\ 0\;\;\;\;{\xi ^{\left( 2 \right)}} \cdots 0 \hfill \\ \; \vdots \;\;\;\; \vdots \;\;\;\;\;\;\;\; \vdots \hfill \\ 0\;\;\;\;0\;\;\;\; \cdots {\xi ^{\left( N \right)}} \hfill \\ \end{gathered} \right),$ (7)
)

其中,ξ(i)=(i-1)Δξ(i=1,2,…,N)是出射光电子能量.

K2分子与激光场的相互作用项可以表示成

$H' = \left( \begin{gathered} 0\;\;\;{W_{{\text{XA}}}}\;\;\;0\;\;\;o \hfill \\ {W_{{\text{XA}}}}\;0\;\;\;{W_{{\text{A2}}}}\;\;o \hfill \\ 0\;\;\;{W_{{\text{XA}}}}\;\;\;0\;\;\;{W_{2i}} \hfill \\ \tilde o\;\;\;\;\;\tilde o\;\;\;{{\tilde W}_{2i}}\;\;O \hfill \\ \end{gathered} \right),$ (8)

其中,${\tilde W_{2i}} = \left( {W_{2i}^{\left( 1 \right)},W_{2i}^{\left( 2 \right)},\cdots ,W_{2i}^{\left( N \right)}} \right)$是一个N维行向量,向量元表示的是|2〉态和|X+〉态在外场下的耦合,O是一个N×N维零矩阵. 两个电子态在外场下的耦合可以写成

$\begin{gathered} {W_{{\text{XA}}}} = \hbar {R_1}\left( R \right)\cos \left( {{\omega _1}t} \right),\hfill \\ {W_{{\text{A2}}}} = \hbar {R_2}\left( R \right)\cos \left( {{\omega _2}t} \right),\hfill \\ {W_{{\text{2i}}}} = \hbar {R_3}\left( R \right)\cos \left( {{\omega _3}t} \right),\hfill \\ \end{gathered} $ (9)

其中,${R_1} = {\mu _{{\text{XA}}}}\left( R \right){e_1}f\left( t \right)/\hbar ,{R_2} = {\mu _{{\text{A2}}}}\left( R \right){e_2}f\left( t \right)/\hbar $和${R_3} = {\mu _{{\text{2i}}}}\left( R \right){e_3}f\left( t \right)/\hbar $分别是激光场|X〉→A〉态,|A〉→2〉态和|2〉→X+〉态的Rabi频率. μXA(R),μA2(R)和μ2i(R)是电子态的跃迁偶极矩,e1e2e3是激光场的幅值,ω1ω2ω3是它们的角频率,脉冲包络采用高斯形式f(t)=exp[-4ln2(t/τ)2]. τ是脉宽,本文计算取值 30 fs.

能量分辨光电子能谱[21, 23, 25]

$P\left( {{\xi ^{\left( i \right)}}} \right) = \mathop {\lim }\limits_{t \to \infty } {\int {{\text{d}}R\left| {{\psi ^{\left( i \right)}}\left( {R,t,{\xi ^{\left( i \right)}}} \right)} \right|} ^2}.$ (10)

势能曲线取自文献[28, 29, 30]. 跃迁偶极矩取自文献[31]. 本文出射光电子能ξ((i)的取值范围为0~2 eV,电离态数目N为120. 采用分裂算符-傅里叶变换法数值求解含时薛定谔方程[32, 33].

2 结果和讨论

图 2(a)是不同泵浦2激光场强的光电子能谱图. 激光参数: I0=1.0×1011 W·cm-2,I1=I3=4I0,λ1=848 nm,λ2=λ3=785 nm,τ=30 fs.光电子谱呈现对称三分裂. Yao和Zheng在泵浦1激光场的近共振区(λ1=λ2=λ3=785 nm)观察到K2分子的不对称三分裂. 但他们对于共振情况未做研究[25]. 此对称三分裂在Na2分子[21, 22]和Li2分子[23, 24]的研究中已有报道.这与较强中间跃迁耦合作用下(R2$ \gg $R1,R3)四态原子体系的三峰吸收谱(动力学分裂)类似[10, 11, 14, 15, 17, 20]. 光电子能谱的这种分裂模式就是AT分裂.它可以用缀饰态理论的ac-Stark 分裂来解释: 双峰结构是由共振电离过程中足够强的Rabi振荡引起的[6, 21, 22, 23, 24, 25]. 缀饰态理论中,激发态|2〉在外加激光场作用下分裂为三个亚稳态,它们分别对应于光电子能谱中三峰. 图 2(a)可见三分裂间距随泵浦2激光场强的增强而增大. 这与对三态K[2, 3],K2[8, 9],Na2[6],和四态 K2分子[25]的研究结果相似. 相似特征也出现在与三激光场相互作用的四态原子的吸收谱中[10, 11, 14, 15, 16, 17, 18, 19, 20, 34].图 2(b) 是谱峰位置随泵浦2激光Rabi频率的变化图. 中间峰位置在 0.474 eV,由${E_{v0}} + \sum \hbar {\omega _k} - {V_I}\left( {{R_0}} \right)$[6, 21, 23]得到,Ev0是振动基态的能量,$\hbar {\omega _k}$是光子能量,VI(R0)是|X+〉态在中性分子基态平衡核间距R0处的势能(如图 1所示). 三峰中心位置如图 2(b)中实线所示分别为 0.474-R/2,0.474,0.474+R/2(有效核间距$R = \sqrt {R_1^2 + R_2^2} $[2, 11, 14, 19, 21, 22, 23, 24, 25, 35],这与数值结果一致. 当泵浦2激光场强较弱时(R2$ \ll $R1),AT分裂正比于R1/2 (如图 2(b)中虚线所示). 当泵浦2激光场强较强时(R2$ \gg $R1),AT分裂正比于R2/2 (如图 2(b)中点线所示).

图2 (a) 不同泵浦2激光场强的光电子能谱,(b) 谱峰位置与泵浦2场Rabi频率R2的关系
(曲实线表示缀饰态理论结果. 虚直线和点直线分别表示R2$ \ll $R1和R2$ \gg $R1的渐近行为.)
Fig. 2 (a) Photoelectron spectra at various Pump-2 laser intensities I2, (b) Peak positions versus Pump-2 Rabi frequency R2 (Curves in solid lines show result using dressed-state formalism. The dashed straight lines and dotted straight lines indicate asymptotic behaviors for R2$ \ll $R1andR2$ \gg $R1, respectively.)

图 3(a)是泵浦1激光共振,不同泵浦2激光波长的光电子能谱图. 激光参数: I0=1.0×1011 W·cm-2,I1=I2=I3=4I0,λ2=λ3=785 nm,τ=30 fs. 泵浦2激光场失谐量为Δ2=ω2-ω2Aω2AA〉→2〉态的固有频率. 当泵浦2激光共振时,光电子谱为对称三分裂:一个中间峰和两个边峰,非共振时为不对称三分裂. 此不对称性已经在对K原子[2],K2 分子[8, 9]和四态原子[18, 19, 34]的研究中观察到.泵浦2激光波长增加,三峰向低能方向移动. 这是因为波长越长,光子能量越小,从而导致光电子能量越低.这与三态K2分子在正弦型和方波型脉冲包络激光场的研究结果相似.高斯型脉冲情况未有研究[25]. 激光波长(也即脉冲频率)引起频谱移动在较大分子中也观察到[36]. 图 3(b)是谱峰位置随泵浦2场失谐量Δ2的变化图. 三峰的位置分别是0.311+0.986Δ2,0.475+0.278Δ2,和 0.641+0.981Δ2. 这表明三峰位移量不相等: 中间峰位移1/4Δ2,两个边峰位移Δ2.四态阶跃型分子光电子谱谱峰能量位移行为未见报道.Echaniz等人[17]研究了四态N-型Rb吸收谱中三峰位置与耦合场Rabi频率和失谐量的依赖关系. 他们认为谱峰位移量与失谐量不是线性关系.图 3(b)可见,泵浦2激光非共振时,三峰中相邻两峰间距不相等. 此现象与失谐场中对四态原子的研究结果一致[16, 19, 24]. 三峰中两边峰间距(0.370 eV)不变. 在近共振区(695 nm≤λ2≤895 nm),当泵浦2激光场偏离共振,三峰逐渐变为双峰. 类似现象在四态V-型原子的研究中有报道[10].当泵浦2激光场失谐量为±R1/2 (λ2=695 nm 或 895 nm)时,一个边峰与位移的中间峰交叉,如图 3(b)所示. 文献7中用双缀饰态解释此现象.此交叉也在文献[17]中提到. 图 3也显示了泵浦2激光场远共振区(Δ2>R1/2,即λ2 < 695 nm 和 λ2>895 nm),波长对AT分裂的影响. 当泵浦2激光场失谐量Δ2较大时,光电子谱为AT双峰. 双峰分裂间距(0.370 eV)不因泵浦2激光波长改变而改变.

图3 (a) 泵浦2激光共振,不同泵浦1激光波长(648 nm~1 188 nm)的光电子能谱, (b) 谱峰位置与泵浦1场失谐量Δ1的关系. Fig. 3 (a) Photoelectron spectra at various Pump-2 laser wavelengths (485 nm~1 005 nm) with Pump-1 resonant, (b) Peak position versus Pump-2 detuning Δ2

当泵浦2激光场失谐量为R1/2(λ2=695 nm)时,光电子能谱与泵浦2激光场强的关系如图 4(a)所示. 激光参数: I0=1.0×1011 W·cm-2,I1=I3=4I0,λ1=848 nm,λ2=695 nm λ3=785 nm,τ=30 fs. 泵浦2激光场强为零时,光电子谱为双峰位于±R1/2的AT双分裂.泵浦2激光场引起双峰的一峰发生双分裂,从而导致三峰光电子谱.这与三/四态Λ-型体系的研究结果一致[16, 37].图 4(b)是三峰位置随泵浦2激光Rabi频率的变化图. 当泵浦2激光场较弱时(R2$ \ll $R1),AT分裂的外峰正比于R2/2 (图 4(b)中虚线所示). 当泵浦2激光场强较强时(R2$ \gg $R1) AT分裂的内峰位置接近零失谐位置(0.637eV),两边峰正比于R2.

图4 (a)不同泵浦2激光场强的光电子能谱(Δ2=R1/2), (b) 光电子能谱谱峰位置与泵浦2场Rabi频率 R2的关系. (曲实线表示缀饰态理论结果. 虚直线和点直线分别表示R2$ \ll $R1R2$ \gg $R1的渐近行为.) Fig. 4 (a) Photoelectron spectra for various Pump-2 laser intensities I2 with Δ2=R1/2, (b) Peak positions versus Pump-2 Rabi frequency R2 (Curves in solid lines show result using dressed-state formalism. Dashed straight lines and dotted straight lines indicate asymptotic behaviors for R2$ \ll $R1 and R2$ \gg $R1,respectively.)
3 结论

利用含时波包法研究了四态阶跃型K2分子光电子能谱的AT分裂.分别讨论了在泵浦2激光场共振,近共振区和远共振区三种情况下,泵浦2激光场强和波长对AT分裂的影响.

在共振区(λ2=695 nm),光电子谱为对称三分裂(峰高和相邻峰间距),AT间距随泵浦2场强增强而增大. 当泵浦2激光场强较弱时(R2$ \ll $R1),AT分裂正比于R1/2. 当泵浦2激光场强较强时(R2$ \gg $R1),AT分裂正比于R2/2.

在近共振区(695 nm≤λ2≤895 nm),光电子谱为不对称三分裂(峰高和相邻两峰间距),三峰中两边峰间距(0.370 eV)不因泵浦2波长改变而改变. 泵浦2波长增加,谱峰向低能方向移动.中间峰位移1/4Δ2,两边峰位移Δ2. 当泵浦2激光场偏离共振,三峰逐渐变为双峰. 近共振区和远共振区的临界点为Δ2R1/2(λ2=695 nm或者895 nm).

在远共振区(即λ2 < 695 nm和λ2 > 895 nm),光电子谱为不对称双峰(峰高),分裂间距不因泵浦2激光波长的改变而改变.泵浦2激光波长增加,双峰以相等位移量Δ2向低能方向移动.

在近共振区与远共振区的临界点λ2=695 nm,泵浦2激光场强为零时,光电子谱为双峰位于±R1/2的AT双分裂. 泵浦2激光场引起双峰的一峰发生双分裂,从而导致三峰光电子谱. 当泵浦2激光场较弱时(R2$ \ll $R1),AT分裂的外峰正比于R2/2. 当泵浦2激光场较强时(R2$ \gg $R1),AT分裂的内峰位置接近零失谐位置(0.637 eV),两边峰正比于R2.

参考文献
[1] AUTLER S H, TOWNES C H. Stark effect in rapidly varying fields[J]. Physics Review, 1955, 100(2):703.
[2] WOLLENHAUPT M, ASSION A, BAZHAN O, et al. Control of interferences in an Autler-Townes doublet:Symmetry of control parameters[J]. Physical Review A, 2003, 68(1):015401.
[3] WOLLENHAUPT M, LIESE D, PRÄKELT A, et al. Quantum control by ultrafast dressed states tailoring[J]. Chemical Physics Letters, 2006, 419(1):184-190.
[4] PENG Y, ZHENG Y J. Coherent optical spectroscopy of a single quantum dot using photon counting statistics[J]. Physical Review A, 2009, 80(4):043831.
[5] WANG Z D, YANG S Y, LIU T T, et al. Effect of atomic density on propagation and spectral property of femtosecond Gaussian pulses[J]. Chinese Journal of Computational Physics, 2015, 32(1):75-85.
[6] SUN Z G, LOU N Q. Autler-townes splitting in the multiphoton resonance ionization spectrum of molecules produced by ultrashort laser pulses[J]. Physical Review Letters, 2003, 91(2):023002.
[7] YUAN K J, SUN Z G, CONG S L. Molecular photoelectron spectrum in ultrashort laser fields:Autler-Townes splitting under rotational and aligned effects[J]. Physical Review A, 2006, 74:043421.
[8] YAO H B, ZHENG Y J. Autler-Townes splitting in photoelectron spectra of K2 molecule[J]. Chinese Physics B, 2012, 21(2):023302.
[9] YAO H B, LI W L, ZHANG J, Peng M. Quantum control of K2 molecule in an intense laser field:Selective population of dressed states[J]. Acta Physica Sinica, 2014, 63(17):178201.
[10] WEI C J, SUTER D, WINDSOR A S, et al. ac Stark effect in a doubly driven three-level atom[J]. Physical Review A, 1998, 58(3):2310-2318.
[11] HAN D A, ZENG Y G, CHEN W C, et al. Sub- and super-luminal phenomena in a doubly driven four-level system[J]. Communications in Theoretical Physics, 2011, 55:671-675.
[12] LIU Z B, FAN X J. Phase correlation in propagation effect of a Doppler broading quasi-Λ type four-level system[J]. Chinese Journal of Computational Physics, 2012, 29(6):881-890.
[13] SADEGHI S M, MEYER J, RASTEGAR H. Laser-induced transparency and dark-line effects caused by three-wave mixing in atomic systems[J]. Physical Review A, 1997, 56(4):3097-3105.
[14] YANG L J, ZHANG L S, ZHUANG Z H, et al. Spectral feature with sub-natural linewidth due to quantum interference in s four-level system[J]. Chinese Physics B, 2008, 17(6):2147-2151.
[15] YANG L J, ZHANG L S, LI X L, et al. Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance[J]. Physical Review A, 2005, 72(5):053801.
[16] ZHANG L S, LI X L, WANG J, et al. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration[J]. Acta Physica Sinica, 2008, 57(8):4921-4926.
[17] DE ECHANIZ S R, GREENTREE A D, DURRANT, et al. Observation s of a driven V system probed to a fourth level in laser-cooled rubidium[J]. Physical Review A, 2001, 64(1):013812.
[18] DUTTA B K, MAHAPATRA P K. Control of the spontaneous emission spectrum in a driven N-type atom by dynamically induced quantum interference[J]. Physica Scripta, 2009, 79:065402.
[19] WANG D S,ZHENG Y J. Quantum interference in a four-level system of a 87Rb atom:effects of spontaneously generated coherence[J]. Physical Review A, 2011, 83(1):013810.
[20] SANDHYA S N. The effect of atomic coherence on absorption in four-level atomic systems:an analytical study[J]. Journal of Physics B, 2007, 40:837-849.
[21] MEIER C, ENGEL V. Interference structure in the photoelectron spectra obtained from multiphoton ionization of Na2 with a strong femtosecond laser pulse[J]. Physical Review Letters, 1994, 73(24):3207-3210.
[22] MEIER C, ENGEL V, MANTHE U. An effective method for the quantum mechanical description of photoionization with ultrashort intense laser pulses[J]. Journal of Chemical Physics, 1998, 109(1):36-41.
[23] HU W H, YUAN K J, HAN Y C, et al. Autler-Townes splitting in photoelectron spectrum of three-level Li2 molecule in ultrashort pulse laser fields[J]. Chinese Physics Letters, 2007, 24(6):1556-1559.
[24] HU W H, YUAN K J, HAN Y C, et al. Three-peak Autler-Townes splitting in the photoelectron spectrum of Li2 molecules caused by femtosecond laser pulses[J]. International Journal of Quantum Chemistry, 2010, 110:1224-1234.
[25] YAO H B, ZHENG Y J. Quantum control of a molecular system in an intense field via the selective population of dressed states[J]. Physical Chemistry Chemical Physics, 2011, 13:8900-8907.
[26] BRIXNER T, KRAMPERT G, PFEIFER T, et al. Quantum control by ultrsfast polarization shaping[J]. Physical Review Letters, 2004, 92(20):208301.
[27] SCHLESINGER M, MUDRICH M, STIENKEMEIER F, et al. Dissipative vibrational wave packet dynamics of alkali dimers attached to helium nanodroplets[J]. Chemical Physics Letters, 2010, 490:245-248.
[28] MAGNIER S, AABERT-FRECON M, ALLOUCHE A R. Theoretical determination of highly excited states of K2 correlated adiabatically above K(4p)+K(4p)[J]. Journal of Chemical Physics, 2004, 121(4):1771-1781.
[29] JRAIJ A, ALLOUCHE A R, MAGNIER S, et al. Theoretical spin-orbit structure of the alkali dimmer cation K2+[J]. Canadian Journal of Physics, 2008, 86(12):1409-1415.
[30] JRAIJ A, ALLOUCHE A R, MAGNIER S, et al. Theoretical investigation of the Ωg,u(+/-) states of K2 dissociating adiabatically up to K(4p2P3/2)+K(4p2P3/2)[J]. Journal of Chemcial Physics, 2009, 130(24):244307.
[31] DE VIVIE-RIEDLE R, KOBE R K, MANZ J, et al. Femtosecond study of multiphoton ionization processes in K2:pump-probe to control[J]. Journal of Physical Chemistry, 1996, 100:7789-7796.
[32] ZHANG H, HAN K L, ZHAO Y, et al. A real time dynamical calculation of H2- photodissociation[J]. Chemical Physical Letters 1997, 271:204-208.
[33] HU J, HAN K L, HE G Z. Correlation quantum dynamics between an electron and D2+ molecule with attosecond resolution[J]. Physical Review Letters, 2005, 95:123001.
[34] LI X L, LIU H N, YANG Y. Influence of off-resonant coupling field on electromagnetically induced transparency and electromagnetically induced absorption in a closed Λ-shaped four-level system[J]. Acta Optica Sinica, 2011, 31(1):0102001.
[35] ZHANG H B, KHADKA U, SSONG J P, et al. Measurement of ac-Stark shift by a two-photon dressing process via four-wave mixing[J]. Europhysics Letters, 2011, 93:23002.
[36] ZHANG Y J, ZHANG Q Y, SONG Y Z, et al. Influence of femtosecond laser chirp on optical limiting and dynamical two-photon absorption of 4,4'-bis(di-n-butylamino) stilbene compounds[J]. Chinese Journal of Computational Physics, 2015, 32(1):65-74.
[37] CARDIMONA D A, ALSING P M, MOZER H, et al. Interference effects in a three-level atom in a cavity beyond the weak-fiels approximation[J]. Physical Review A, 2009, 79(6):063817.
引用本文
李月华, 郭玮. 飞秒激光参数对四态阶跃型分子光电子能谱的影响[J]. 计算物理, 2016, 33(4): 453-459. DOI:
LI Yuehua, GUO Wei. Photoelectron Spectra of Four-Level Ladder Molecules: Effect of Femtosecond Laser Parameters[J]. Chinese Journal of Computational Physics, 2016, 33(4): 453-459. DOI: