Adaptive Discontinuous Galerkin Method with Lax-Wendroff Type Time Discretization and Three-dimensional Nonconforming Tetrahedral Mesh for Euler Equations
-
Abstract
We present a Lax-Wendroff discontinuous Galerkin (LWDG) method combining with adaptive mesh refinement (AMR) to solve three-dimensional hyperbolic conservation laws. Compared with Runge-Kutta discontinuous finite element method (RKDG) the method has higher efficiency. We give an effective adaptive strategie. Equidistribution strategy is easily implemented on nonconforming tetrahedral mesh. Error indicator is introduced to solve three-dimensional Euler equations. Numerical experiments demonstrate that the method has satisfied numerical efficiency.
-
-