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稳态问题混合边界积分方程的

高精度求积法与分裂外推

黄 晋1， 张黔川2， 吕 涛2
(1．电子科技大学应用数学学院，四川成都610054；2．四川大学数学学院，四川I成都610064)

[摘要】 提出了求积法解稳态问题的混合边界积分方程，它拥有高精度，低复杂度．通过并行地解粗网格上

的离散方程，根据误差的多参数渐近展开，应用分裂外推算法得到高精度的近似解，同时获得后验误差估计．
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O 引言
声学，弹性力学，电磁力学和流体力学等诸多问题常归结为调和方程的混合边值问题

『Au：0， 在n，

i a；u+卢。a“，an：g，在r；，i：1，⋯，d， (1)

这里n c R2是曲边多角形域，E(i=1，⋯，d)是分段光滑且r=U／-,；是n的边界，g是r上的分片连续函

数，口i，盛是B上的给定常函数．Qi是n的顶点，且内角为吼∈(O，27t)．方程(1)可用有限差分法或有限元法

求解，这些方法必须进行区域剖分，计算量大，但借助位势理论把(1)式转化为边界积分方程，近似计算仅对

边界进行剖分，计算量少，舍入误差小．具体方法分两步：首先，解边界积分方程

一』r掣log|y-戈№d+¨戈)熹log旧菇№d=o(yM Y)， (2)

这里I Y一戈I是欧氏距；若yE／-,是r上的一个角点，设在Y处r的两个方向的切线间的夹角是口，则口(Y)=

0／(27t)，若Y∈r是r上的光滑点则口(Y)=1／2．若／／,(髫)或Ou／On由式(2)解出，另一个Ou／On或H(菇)由式

(1)的边界条件求出；其次，内点值u(Y)，Y∈0可由

山)=封i．u㈩熹log旷川沪乩掣109 y一菇№d (3)

求得．

熟知当怠=0(i=1，⋯，d)式(1)是纯Dirichet问题，式(2)是第一类弱奇异边界积分方程组且当对数容

度渖1 Cr≠1时，它有唯一解；当口i=0(i=1，⋯，d)式(1)是纯Neumann问题，式(2)是第二类弱奇异边界积分

方程组仅当

d^

∑I g／l§ids=0
i=1
J r二

成立时，它在相差一个常数意义下有唯一解；当aifli≥0(i=1，⋯，d)且存在口。≠0，式(2)是混合边界积分方

程组且式(2)有唯一解．

Galerkin法‘81和配置法㈨常用来解式(2)，但他们是非常昂贵的方法Ⅲ，机械求积法能减少大量的计算，

离散矩阵的生成不需计算任何奇异积分，只须赋值，但在理论和数值处理上非常困难．本文首先对多角形区

域0各边进行离散剖分，设其网宽为hi(i=1，⋯，d)，用求积公式[3’61建立了高精度的求积法；其次获得了误
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差的多参数渐近展开式，仅需解多个粗网格上的离散方程组，利用分裂外推，得到高精度的近似解；最后导出

后验误差估计．

1机械求积法

设L能被辑(s)=(茗，。(s)，菇彪(s))：[0，E]一一描述且I戈：(s)J 2=I牟：。(s)l 2+J髫乞(s)J 2>0，正是一

的可测长度，用周期Ⅲ变换

s=L吼(￡)：[O，1 3一[0，L]， 芦∈N， (4)

且钆(t)=巳(t)，以(1)和巳(t)=j．(sin(7cs))’ds．在[o，1]上，定义积分算子

(A扣埘，)(t)=一专I，毛(t)ln 2e_1佗sin(n(￡一丌))I％(r)dr， f∈[o，1]， (5)

Aoqwq)(t)=一告-f：z。(t)lnl芝；三戋!；揣f埘。(r)dr，t∈[。，1]， (6)

Aqmwmm)=一寺-『：扣)ln}X—q(儿“洲“f)df，
(K，tt，。)(t)=一lI：z。(￡)五，。(￡，r)钾。(r)dr，

这里埘。(z)=加。(互。(f))咒p：(#)I互二(￡)I，且互。(f)=菇。(L％(f))，和

k。(t，r)=

q≠m，t∈[0，1]

t∈[0．1]，

；幺(r)(三。。(r)一互。。(t))一；7。。(r)(互砚(z-)一名。：(#))

l；。(t)一互。(r)l
2

I；(r)I
’

省名：(t)石：。(r)一戈名。(t)茹：：(t)
。

[(；：。(t))2+(；：：(t))2]I；7(t)I’

t≠r，

t=f．

(7)

(8)

⋯心，《粼’套≥圭篓o㈩也㈤E㈩。，端：t【“(驴。())， 在r。上，当盈≠0，
“∥小⋯⋯小⋯。’ 3帕’～

方程(2)能被表为

(J8：E+aAo+aAl+aA2+卢K)W=F， (9)

其中A。=diag(A。。，⋯，A抛)，A。=diag(A㈩⋯，A。。)，A：=[A，]曼。；，，K=[k]j。：。是矩阵算子，
W=(埘。(t)，⋯，埘。(t)T，F=(^(t)，⋯，五(t))7．且

f29，(X,q(‘))+∑J：：：。(‰骺)(t)， 当成=0，

厶¨一h扣“。)g以¨∑■‰g“叭 当成≠0，

这里g。(f)=g。(龙。(t))L妒：(t)I菇-p，(t)1．设口扣(t，r)，o。。(t，r)，o，(t，r)和k。。(t，r)分别是算子A扣，

A。。，A，。和‰的积分核，且有下列结论H1：①口扣(t，r)是对数奇性函数，a。。(t，r)是连续函数；②当11，n r。

=声时，k。。(t，r)和a忡(t，r)是连续函数；当11。n 11。≠庐，且p≥3时，a。。(t，r)=sin”(7ct)o，。(t，r)和

k。(t，r)都是连续函数；③虽然au。(x)／Bn在角点有奇性，但W。(t)是光滑函数．

设h。=1In，，n。∈N，q=1，⋯，d和巧=o=(_『一1／2)l，_『=1，⋯，竹．对积分算子D如Ao，，A俨或K。，利

用中矩形公式‘引，建立Nystrom近似

(D‘t￡，。)(f)=^，∑d(t，_)埘，(o)， f∈[o，1]， q=1，⋯，d， (10)

且有误差估计

(Dw，)(t)一(D6埘。)(t)=0(^：饥l∈N． (11)

对弱奇异算子A神，利用求积公式嘲，建立Fredholm近似
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(Ah扣"。)(f；)=一知(t：)h。{∑In 2e-1儿sin(n(fi—rJ))I埘。(0))／7c—
J。1’‘，‘'

hqIn 27ce。1陀hq／(2n)I彳口(ti)t13口(t‘)／7c， q=1，⋯，d， (12)

且有误差估计

(A§训“)一(A以m_c)：一要萎％群_㈡)州o](2一^≯“+D(^；饥 ⋯)(A§埘。)(￡。)一(A扣埘，)(￡。)=一熹∑等熹孚[z。(￡i)叫。(ti)P^≯“+D(^M (13)

e’(t)是Riemann Zeta函数的导函数．令t=tj，可得(9)式的近似方程

(卢E“+aA：+aA：+aA：+pp)w小=Fh， (14)

其中矿=(哦，⋯，蛾)’，形：=(训。(t。)，⋯，埘。(t～))7，A：=diag(A％，⋯，A2)，A四h=[口qo(ti，r；)]舟：。；A：=

diag(A‰，⋯，A：。)，A：，=[aqo(巧，rf)17,：。，A：=[A，h。]曼。：。，A。h。=[口。。(o，r；)]0吐々，Fh=(F：，⋯，F：)7，F：=

(砖，⋯，丘)1和

f29。(tj)+∑：：。(略h g。)(o)， 当flq=0．

zJ 2

i(A：+A：。)g。(。)+∑：：。(A：g。)(巧)， 当成≠。．
‘15’

显然，式(14)是n=n。+⋯+n。个未知数的线性代数方程组，可以证明‘⋯：当原方程组(9)存在唯一解，那么

近似方程(14)有唯一解存在．一旦矿由方程(14)解出，内点值可由

山)=去妻瓢h础∽“M)一驾掣⋯一山川瞰㈡)I (16)

计算，这里
’

}， 、 菇-p。：(t；)(互。。(t￡)一Y。)一互7。。(ti)(；。：(ti)一Y：)
拓m oy，z’。可磊瓦F巧了了百j币=百河T百万丌。

2误差的多参数渐近展开与分裂外推
在这一段我们给出本文的主要定理及主要算法．

定理 设方程组(2)有唯一解，r。∈C5，g。∈C4(工1。)，m=1，⋯，d，那么存在与h=(hl，．一，h。T无关的

向量函数∞=(∞1I．一，∞。)’，∞。∈c[o，1]使得

(W—w而)l。一。=diag(h：，⋯，^：)CO I。：。+0(h：)，ho=maxh。 (17)

成立．

证明：由式(10)，(12)，有

(F—F6)I；：。=diag(h：，⋯，^：)r'R“移l。：。+0(h：)， (18)

这里h。=姗《：。h。和秽=(口1’．一，％)’且口。=一‰车7(一2)(磊(t)g。(t))”／7c和

『0， 当风=0，
r／-2 11， 当风≠0．

利用式(9)，(11)，(13)，得到

(J81E6+口A：+口A：+口A：+p舻)R6(w^一形)l。：。 =Fh一—。(JB_E‘+口A：+口A：+aA：+p舻)R6W I。：。 =

∥一[(pE+口Ao+aA。+口A：+J臼_K)W—diag(h：，⋯，^：)，R“y)I。：。+O(h：)=

(F“一F)I。：。+diag(h；，⋯，h：)，R“y I，：。+0(h：)=

diag(h：，⋯，^：)，R“妒I；：，+0(h：)，ho=maxh。，

其中)，=(y1，．一，扎T和y。=口。}7(一2)(％(t)I／)。(t))7／7r且妒=(≯。，⋯，九T和驴。=‰+‰．根据文

[4，5，10]，可以证明￡6=，(矿)一R‘(aA：+aA：+心)科是聚紧收敛于L=(胆+aA。)。1(aA。+以：+胚)，
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这里(M6)～=(胆‘+aA：)～，，，R“分别是延拓和限制算子，于是得到

(E“+三“)(W～w^)I。：。=diag(h：，⋯，^：)(M：)一1，R“妒I。：。+0(h：)． (19)

建立辅助方程

(E+L)cu=M。1∞ (20)

和它的近似方程

(E“+￡“)03h=(M“)一，尺“曲， (21)

从而获得

(E“+￡“)(W—w小一diag(hi，⋯，^：)∞“)I；：。=0(h：)， (22)

因(E“+￡“)～一致有界，故有

(W—w小一diag(h；，⋯，^：)cu6)I；：。=0(h：)， (23)

用叫代替式(23)中的∞6，得到

形一∥=diag(h；，⋯，h：)叫+0(h：)． (24)

利用多参数渐近展开式(24)，可导出分裂外推算法．

①取h‘∞=(h，，⋯，h。)和h‘⋯=(^，，⋯，hm／2，⋯，h。)，根据网参数h‘⋯，由式(14)并行地解出

W“神(ti)，ti=(i一1／2)h。，i=1，⋯，n。，m=1，⋯，d．

② 在粗网格上实行分裂外推

W。(ti)=8／7[∑矿㈤’(ti)一(d一7／8)旷∞’(ti)]． (25)

得到W’(ti)后，内点值由式(16)得出．同时，利用I W+(ti)一形(ti)I=0(h：)，得到非常重要的后验误

差估计

h卜丢妻秒‰i，卜
l肜(。一号[∑d矿‰，(。一(d一詈)矿∞，(。]f+

(等一，)l吉墨d矿㈤’(¨一矿∞’(。l≤

(等一1)l了1∑d矿㈤‰；)一矿㈤㈡)l+O(ho)．

3算例与结论

考虑混合问题(1)，其边界为

／-,： 戈l=0， 戈2=0 和 茗；+茁；=1， 咒1>0， 戈2>0，

边值条件是㈨：在圆弧上，Ⅱ=1；当菇：=0时，u=0；当戈，=0时，Du／On=0．该问题的真解

"=(2／Tt)arctan(2x：／(1一算；一菇；))．用p。(￡)代替，表1给出求积法，分裂外推计算的误差和后验误差．
表1三种误差的结果

Table 1 Error。a posteriori errOr and SEM-error

(nl，n2，n3) “ e日 (n1，n2，“3) eA r^ eB rB

(4，4，4) 2．32e．2 7．352e．2 (8，8，8) 3．653e．3 6．4 9．815e一3 7．5

(8，4，4) 1．830e．2 5．193e．2 (16，8，8) 2．407e-3 7．6 6．271e．3 8．3

(4，8，4) 1．444e．2 3．828e．2 (8，16，8) 2．005e．3 7．2 5．182e．3 7．4

(4，4，8) 1．483e一2 4．546e一2 (8，8，16) 2．088e一3 7．1 6．131e．3 7．3

平均误差 1．585e．2 4．522e．2 平均误差 2．166e-3 7．3 5．861e．3 7．7

后验误差 1．793e一2 5．559e一2 后验误差 2．974e．3 6．0 7．907e．3 7．0

分裂外推 2．074e．3 8．Oll e-3 分裂外推 1．234e一4 16．8 4．732e一4 16．9
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这里，ep=l u(P)一u6(P)I和rP=l u(P)一u“(P))I／l M(P)一nⅣ2(P))I且P=A=(O．1，0．1)或

B=(O．9，0．1)．当n=64时在文[2]中计算的结果是e^=1．0e一3和e。=1．2e一3．

表1中的数值结果表明了本文的求积法不仅拥有高精度，而且分裂外推，后验误差估计非常有效．由于

积分方程的离散矩阵是满阵，问题的规模越大，本文的方法越有效．

[9]

[10]
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A Quadrature Method and its Splitting Extraplation for

Mixed Boundary Integral Equations of Stable Problems

HUANG Jinl，ZHANG Qi¨．chuan2，LU Ta02

(1．Univerisity of Electronic&Sconce Technology of China，Chengdu 610054，China；

2．Mathematical College，Sichuan University，Chengdu 610064，China)

Abstract： We present a quadrature method for mixed boundary integral equations of stable problems，which provides high accuracy and less

complexity．Discrete equations are solved in parallel according to the coar8e mesh partitions．Approximations with hiigh accuracy are obtmned

by splitting extrapolation methods based on multivariate asymptotic expansion of errors．Besides，a posteriori asymptotic elTor estimate is

derived．

Key words： stable problem；mixed boundary integral equation；quadrature method；splitting extrapolation
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