惯性约束聚变中的机器学习方法

Machine Learning Methods in Inertial Confinement Fusion

  • 摘要: 近年来,机器学习方法已成为惯性约束聚变研究的重要手段。本文列举了近年来惯性约束聚变研究中所涉及到的机器学习算法,介绍了常用算法的原理、特点和应用场景,给出了若干典型应用案例,分析了此领域的发展趋势。

     

    Abstract: In recent years, machine learning (ML) methods have emerged as crucial tools in inertial confinement fusion (ICF) research. This paper compiles ML algorithms employed in ICF studies over the past decade, elucidates their operational principles, distinctive features, and application scenarios, provides representative implementation cases, and analyzes developmental trends within this interdisciplinary domain.

     

/

返回文章
返回